
cthread
Release 1.2.1

Kieran Sonter

Mar 31, 2020

DOCUMENTATION:

1 Installation 3

2 Usage 5
2.1 Module (cthread) . 5
2.2 Examples . 9
2.3 MIT License . 13
2.4 Change Log . 13

3 Indices and tables 15

Python Module Index 17

Index 19

i

ii

cthread, Release 1.2.1

cthread (ControllableThread) is a Python library that is built upon the threading.Thread class. cthread
provides additional functionality to the standard threading.Thread library by allowing the threads to be started,
paused, resumed, reset, and killed.

DOCUMENTATION: 1

cthread, Release 1.2.1

2 DOCUMENTATION:

CHAPTER

ONE

INSTALLATION

For Python 2/3:

>>> pip install cthread

3

cthread, Release 1.2.1

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

See the Quickstart and Alternative States examples listed in Examples.

2.1 Module (cthread)

The documentation of the cthread package is outlined below.

• Exceptions

• Classes

2.1.1 Exceptions

The custom exceptions that cthread can raise are documented below.

exception cthread.CThreadException(message=None, *args, **kwargs)
Bases: Exception

Base class of any ControllableThread exception.

All exceptions that are thrown by the cthread module inherit from this exception. This specific exception
instance is however never raised.

Parameters message (str, optional) – Information about the exception that was raised.

exception cthread.CallbackNotImplemented(message=None, *args, **kwargs)
Bases: cthread.cthread.CThreadException

A state callback function has not been implemented by the child class.

This exception is raised if a cthread.ControllableThread is created without overwriting a particular
state callback function.

Parameters message (str, optional) – Information about the exception that was raised.

exception cthread.InvalidArgument(message=None, *args, **kwargs)
Bases: cthread.cthread.CThreadException

Base class of any invalid argument exception.

This exception is raised if an invalid argument is input to any publicly accessible cthread method. This
specific exception instance is however never raised.

Parameters message (str, optional) – Information about the exception that was raised.

5

cthread, Release 1.2.1

exception cthread.InvalidState(message=None, *args, **kwargs)
Bases: cthread.cthread.InvalidArgument

Base class of an unrecognised thread state.

This exception is raised if a thread state is not recognised. While this exception is a base class of an unrecognised
thread state, this specific instance could also be raised.

Parameters message (str, optional) – Information about the exception that was raised.

exception cthread.InvalidMaxState(message=None, *args, **kwargs)
Bases: cthread.cthread.InvalidState

Maximum thread state is not recognised.

This exception is raised if the maximum thread state is not recognised.

Parameters message (str, optional) – Information about the exception that was raised.

exception cthread.InvalidAlternativeState(message=None, *args, **kwargs)
Bases: cthread.cthread.InvalidState

Alternative thread state is not recognised.

This exception is raised if the required updated state of the thread is not a registered alternative state.

Parameters message (str, optional) – Information about the exception that was raised.

exception cthread.InvalidCallback(message=None, *args, **kwargs)
Bases: cthread.cthread.InvalidArgument

No alternative state callback functions supplied.

This exception is raised if the thread is initialised with alternative states but not alternative state callback func-
tions.

Parameters message (str, optional) – Information about the exception that was raised.

exception cthread.InvalidName(message=None, *args, **kwargs)
Bases: cthread.cthread.InvalidArgument

Desired name of the thread is not a string.

This exception is raised if the name of the thread is not a string.

Parameters message (str, optional) – Information about the exception that was raised.

exception cthread.InvalidQueue(message=None, *args, **kwargs)
Bases: cthread.cthread.InvalidArgument

No communication method to the initialising thread.

This exception is raised if an instance of a cthread.ControllableThread is initialised without a means
of communicating with the thread that initialises it.

Parameters message (str, optional) – Information about the exception that was raised.

2.1.2 Classes

The classes contained within the cthread package are documented below.

class cthread.ControllableThread(name, queue, **kwargs)
Bases: threading.Thread

Parent class for any cthread.ControllableThread.

6 Chapter 2. Usage

cthread, Release 1.2.1

Allows threads to be killed, paused and resumed, and allows for direct communication to the main initialising
thread.

Parameters

• name (str) – Name of the thread.

• queue (queue.Queue) – Priority queue for communication to the main thread.

Raises

• cthread.InvalidName – If name is not a string.

• cthread.InvalidQueue – If queue is not a Queue.

• cthread.InvalidCallback – If kwargs are not a dictionary of functions.

alt(name)
Updates the state of the thread to a registered alternative state.

Note that the state must be a registered alternative state in order for the thread to be updated to the desired
state.

Parameters name (str) – Name of the state to which the thread will be updated.

Raises cthread.InvalidAlternativeState – If the required updated state of the
thread is not a registered alternative state.

kill()
Updates the state of the thread to ThreadState.KILLED.

pause()
Updates the state of the thread to ThreadState.PAUSED.

reset()
Updates the state of the thread to ThreadState.STARTED.

resume()
Updates the state of the thread to ThreadState.RESUMED.

run()
Entry point for the thread.

Contains the cyclic executive of the thread. There are at least six possible states for the thread:

1. STARTED

2. ACTIVE

3. IDLE

4. PAUSED

5. RESUMED

6. KILLED

7. Any alternative individual thread-specific states.

Each of these states has a callback function that must be implemented in any of the child threads. Of
course, the alterative state callback should not be implemented if there are no alternative states.

This cyclic executive will execute as long as the thread is not killed.

Raises cthread.CallbackNotImplemented – If any of the following callback functions
were not overwritten: cthread.ControllableThread._started_callback(),

2.1. Module (cthread) 7

cthread, Release 1.2.1

cthread.ControllableThread._active_callback(), cthread.
ControllableThread._paused_callback(), cthread.
ControllableThread._resumed_callback(), or cthread.
ControllableThread._killed_callback().

class cthread.ThreadState
Bases: object

Represents the state of the thread.

STARTED
Numerical encoding of the ‘started’ thread state.

Type int

ACTIVE
Numerical encoding of the ‘active’ thread state.

Type int

IDLE
Numerical encoding of the ‘idle’ thread state.

Type int

PAUSED
Numerical encoding of the ‘paused’ thread state.

Type int

RESUMED
Numerical encoding of the ‘resumed’ thread state.

Type int

KILLED
Numerical encoding of the ‘killed’ thread state.

Type int

get_state()
Gets the state of the thread.

Returns

State of the thread. There are at least six possible return values:

• ThreadState.STARTED: if the thread is being initialised,

• ThreadState.ACTIVE: if the thread is currently running,

• ThreadState.IDLE: if the thread is currently not running,

• ThreadState.PAUSED: if the thread is transitioning from running to not running.

• ThreadState.RESUMED: if the thread is transitioning from not running to running.

• ThreadState.KILLED: if the thread is in the process of terminating, and

• Any other user-defined thread states.

Return type int

update_max_state(maxState)
Updates the maximum state of the thread.

8 Chapter 2. Usage

cthread, Release 1.2.1

The maxState value is used to determine the validity of a state to supplied to the cthread.
ThreadState.update_state() function. The state of the thread must be within a predefined range,
or else it is an invalid state. The maxState is also not a fixed constant because the user can define their own
states, and hence the validity check of a state must accomodate these user-defined states.

Parameters maxState (int) – Maximum state that the thread can take.

Raises cthread.InvalidState – If the maximum state is <= ThreadState.KILLED.

update_state(state)
Updates the state of the thread.

Parameters state (int) – New state of the thread.

Raises cthread.InvalidState – If state < ThreadState.STARTED or state >
ThreadState._maxState

2.2 Examples

• Quickstart

• Alternative Thread states

Note: In order for the cthread package to be fully functional, the developer must follow two coding practices:

1. Any code within the cthread.ControllableThread._active_callback() callback function and
any registered alternative state callback function must be:

• Non-blocking (at the very least it must only block for a short period of time), and

• Contain no indefinite while or for loops.

In short, the cthread.ControllableThread._active_callback() callback function and any reg-
istered alternative state callback functions must be written to minimize its execution time. This allows the thread
to be controllable. This is because it is only at the end of each callback function that a check is conducted to
determine whether the state of the thread must be updated.

2. The code within the cthread.ControllableThread._started_callback() cthread.
ControllableThread._paused_callback(), cthread.ControllableThread.
_resumed_callback(), and cthread.ControllableThread._killed_callback() call-
back functions will only execute once. There is a wrapper function for each callback function within the
cthread.ControllableThread class. This wrapper function automatically updates the thread state to
cthread.ThreadState.ACTIVE at the completion of the cthread.ControllableThread.
_started_callback() and cthread.ControllableThread._resumed_callback()
callback functions, and cthread.ThreadState.IDLE at the completion of the cthread.
ControllableThread._paused_callback() callback function. These callbacks should be written in
such a way that they pause or resume/start thread functionality.

2.2.1 Quickstart

This code example can be found in the file examples/quickstart.py. It is an example of how to create a class
that inherits from ControllableThread. No functionality has been added to any of the states. The lines:

2.2. Examples 9

cthread, Release 1.2.1

1 # Add any state specific code here (and remove the 'pass') #
2 pass

can be replaced in each of the state callback functions with functional state code that is specific to the user’s needs.

1 import cthread
2 import logging
3 import queue as q
4 import time
5

6 # Configure the logger #
7 logging.basicConfig(level=logging.INFO,
8 format='%(asctime)s %(levelname)s %(name)s %(message)s',
9 datefmt='%Y-%m-%d %H:%M:%S')

10

11 class Quickstart(cthread.ControllableThread):
12

13 def _started_callback(self):
14 # Add any state specific code here (and remove the 'pass') #
15 pass
16

17 def _active_callback(self):
18 # Add any state specific code here (and remove the 'pass') #
19 pass
20

21 def _paused_callback(self):
22 # Add any state specific code here (and remove the 'pass') #
23 pass
24

25 def _resumed_callback(self):
26 # Add any state specific code here (and remove the 'pass') #
27 pass
28

29 def _killed_callback(self):
30 # Add any state specific code here (and remove the 'pass') #
31 pass
32

33 if __name__ == "__main__":
34

35 queue = q.PriorityQueue()
36 quickstart = Quickstart(name="QuickstartThread", queue=queue)
37

38 quickstart.start() # Start the thread. MUST be called first #
39 time.sleep(1)
40

41 quickstart.pause() # Pause the thread. #
42 time.sleep(1)
43

44 quickstart.resume() # Resume the thread #
45 time.sleep(1)
46

47 quickstart.reset() # Reset the thread #
48 time.sleep(1)
49

50 quickstart.kill() # Kill the thread #

This code gives the following output:

10 Chapter 2. Usage

cthread, Release 1.2.1

>> Starting thread: QuickstartThread...
>> (Re)initialising thread...
>> Thread activated!
>> Pausing thread...
>> Thread paused!
>> Resuming thread...
>> Thread activated!
>> (Re)initialising thread...
>> Thread activated!
>> Killing thread...
>> Stopped thread: QuickstartThread!

2.2.2 Alternative Thread states

This code example can be found in the file examples/alternative_state.py. It is an example of how to
create a class that inherits from ControllableThread with additional allowable thread states. No functionality
has been added to any of the additional states. The lines:

1 # 2. Add any alternative state specific code here #
2 pass

can be replaced in each of the additional state callback functions with functional state code that is specific to the user’s
needs.

Note: There are two steps that must be followed when creating a cthread.ControllableThread instance
with alternative states:

1. Initialise the cthread.ControllableThread parent class with additional kwargs of the form name:
callback. Each state name and callback function must be unique.

2. Supply a callback function for each alternative state with the same name as that which was passed to the parent
class in step 1 above.

These two steps are highlighted in the proceeding code.

Then, in order to transition the thread into one of the alternative states, the public method cthread.
ControllableThread.run() must be called with the name parameter identical to the name specified in the
kwargs from step 1 above.

1 import cthread
2 import logging
3 import queue as q
4 import time
5

6 # Configure the logger #
7 logging.basicConfig(level=logging.INFO,
8 format='%(asctime)s %(levelname)s %(name)s %(message)s',
9 datefmt='%Y-%m-%d %H:%M:%S')

10

11 class AlternativeState(cthread.ControllableThread):
12

13 def __init__(self, queue):
14 # 1. Initialise ControllableThread with additional kwargs #
15 cthread.ControllableThread.__init__(self,

(continues on next page)

2.2. Examples 11

cthread, Release 1.2.1

(continued from previous page)

16 name="AlternativeStateThread",
17 queue=queue,
18 ALT1=self._alt1_callback,
19 ALT2=self._alt2_callback
20)
21

22 def _started_callback(self):
23 pass
24

25 def _active_callback(self):
26 pass
27

28 def _paused_callback(self):
29 pass
30

31 def _resumed_callback(self):
32 pass
33

34 def _killed_callback(self):
35 pass
36

37 def _alt1_callback(self):
38 # 2. Add any alternative state specific code here #
39 pass
40

41 def _alt2_callback(self):
42 # 2. Add any alternative state specific code here #
43 pass
44

45 if __name__ == "__main__":
46

47 queue = q.PriorityQueue()
48 quickstart = AlternativeState(queue)
49

50 quickstart.start() # Start the thread. MUST be called first #
51 time.sleep(1)
52

53 quickstart.alt(name="ALT1") # ALT1 state #
54 time.sleep(1)
55

56 quickstart.alt(name="ALT2") # ALT2 state #
57 time.sleep(1)
58

59 quickstart.kill() # Kill the thread #

This code gives the following output:

>> Starting thread: Starting thread: AlternativeStateThread...
>> (Re)initialising thread...
>> Thread activated!
>> Transitioning thread to ALT1 state...
>> Transitioning thread to ALT2 state....
>> Killing thread...
>> Stopped thread: AlternativeStateThread!

12 Chapter 2. Usage

cthread, Release 1.2.1

2.3 MIT License

Copyright (c) 2019 ksonter95

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.4 Change Log

2.4.1 1.2.1 (2019-05-08)

Features

• Added the additional classes to the package (imported into __init__.py) that were released as part of version 1.2.

2.4.2 1.2 (2019-05-07)

Features

• Added examples

• Added wrapper functions to the callback functions for logging purposes and automatic state transition purposes

• Added alternative state registration process

• Additional exceptions

2.4.3 1.1 (2019-05-07)

Features

• Updated Google docstrings to be compatible with Sphinx RST formatting.

• Finalised documentation for the package classes and exceptions.

2.4.4 1.0 (2019-05-05)

Features

• Removed time delay in the cyclic executive of the thread.

2.3. MIT License 13

cthread, Release 1.2.1

2.4.5 0.0.1 (2019-05-01)

Features

• Initial release

14 Chapter 2. Usage

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

15

cthread, Release 1.2.1

16 Chapter 3. Indices and tables

PYTHON MODULE INDEX

c
cthread, 6

17

cthread, Release 1.2.1

18 Python Module Index

INDEX

A
ACTIVE (cthread.ThreadState attribute), 8
alt() (cthread.ControllableThread method), 7

C
CallbackNotImplemented, 5
ControllableThread (class in cthread), 6
cthread (module), 5, 6
CThreadException, 5

G
get_state() (cthread.ThreadState method), 8

I
IDLE (cthread.ThreadState attribute), 8
InvalidAlternativeState, 6
InvalidArgument, 5
InvalidCallback, 6
InvalidMaxState, 6
InvalidName, 6
InvalidQueue, 6
InvalidState, 5

K
kill() (cthread.ControllableThread method), 7
KILLED (cthread.ThreadState attribute), 8

P
pause() (cthread.ControllableThread method), 7
PAUSED (cthread.ThreadState attribute), 8

R
reset() (cthread.ControllableThread method), 7
resume() (cthread.ControllableThread method), 7
RESUMED (cthread.ThreadState attribute), 8
run() (cthread.ControllableThread method), 7

S
STARTED (cthread.ThreadState attribute), 8

T
ThreadState (class in cthread), 8

U
update_max_state() (cthread.ThreadState

method), 8
update_state() (cthread.ThreadState method), 9

19

	Installation
	Usage
	Module (cthread)
	Examples
	MIT License
	Change Log

	Indices and tables
	Python Module Index
	Index

